Using recurrent neural networks to learn the structure of interconnection networks
نویسندگان
چکیده
A modiied Recurrent Neural Network (RNN) is used to learn a Self-Routing Interconnection Network (SRIN) from a set of routing examples. The RNN is modiied so that it has several distinct initial states. This is equivalent to a single RNN learning multiple diierent synchronous sequential machines. We deene such a sequential machine structure as augmented and show that a SRIN is essentially an Augmented Synchronous Sequential Machine (ASSM). As an example, we learn a small six-switch SRIN. After training we extract the net-work's internal representation of the ASSM and corresponding SRIN.
منابع مشابه
Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملUsing Recurrent Neural Networks to Learn the Structureof
the structure of a self-routing interconnection network with a recurrent neural network," in Pro-Abstract A modiied Recurrent Neural Network (RNN) is used to learn a Self-Routing Interconnection Network (SRIN) from a set of routing examples. The RNN is modiied so that it has several distinct initial states. This is equivalent to a single RNN learning multiple diierent synchronous sequential mac...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Networks
دوره 8 شماره
صفحات -
تاریخ انتشار 1995